If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(G)=2G^2+G-6
We move all terms to the left:
(G)-(2G^2+G-6)=0
We get rid of parentheses
-2G^2+G-G+6=0
We add all the numbers together, and all the variables
-2G^2+6=0
a = -2; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-2)·6
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-2}=\frac{0-4\sqrt{3}}{-4} =-\frac{4\sqrt{3}}{-4} =-\frac{\sqrt{3}}{-1} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-2}=\frac{0+4\sqrt{3}}{-4} =\frac{4\sqrt{3}}{-4} =\frac{\sqrt{3}}{-1} $
| -6/n=3 | | -3(8+3x)=-87 | | 2x-0.4=113.4 | | 5(7n-1)+4=31+3n | | -(9/4)v+4/5=7/8 | | 4d-11=15-19d | | 4x+6x+15=55 | | (t^2+4t+4)^2=0 | | 9x-15-2x=3(-20+30x) | | -8=12-x/4 | | 3.2a–16=4a | | q+109=q+89 | | f(-1)=|-1|+2 | | (2t+2)/3-(5t)/4=11/6 | | 300=12x+85 | | -12=c-2 | | 5n(7n-1)+4=31+3n | | 0.70n-23=0.50n-19 | | 3x-2x/8=8 | | -6(1x-2)=24 | | 9(5h-4)=54 | | 3x+18+2x=68 | | K/5+3k=-3 | | 9e+4=14+9 | | -3=n+5/2 | | f(5)=-4(25)-10 | | 0=-7/8x | | -2(9x-9)=-24 | | 20x+11.45=5.6 | | 3(4f+2)=18 | | -1x-8=-1 | | 4.8+3.4x=20.1 |